Rayleigh-Ritz Method For Free Vibration of Mindlin Trapezoidal Plates

نویسنده

  • Mohamed A. El-Sayad
چکیده

In the present paper, the free vibration of moderately thick trapezoidal plates has been studied. The analysis is based on the Mindlin shear deformation theory. The solutions are determined using the pb-2 Rayleigh-Ritz method. The transverse displacement and the rotations of the plate are approximated by Ritz functions defined as two dimensional polynomials of the trapezoidal domain variables and a basic function that satisfied as essential boundary conditions. Three different arrangements of boundary conditions are considered which are the cantilevered, the simply supported and the clamped edge conditions. The effects of both, transverse shear and rotary inertia are accounted. Convergence of the solutions is verified by considering polynomials of several subsequent degrees till the results converge. The present results are compared with those available in the open literature which indicates good agreement between the present results and those previously published. A set of tabulated results for a wide range of variation of both thickness to root width (H/a) and the trapezoid angle  for each of the three different cases of boundary conditions are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Free Vibration Analysis of Size-Dependent, Functionally Graded, Rectangular Nano/Micro-plates based on Modified Nonlinear Couple Stress Shear Deformation Plate Theories

In the present study, a vibration analysis of functionally graded rectangular nano-/microplates was considered based on modified nonlinear coupled stress exponential and trigonometric shear deformation plate theories. Modified coupled stress theory is a non-classical continuum mechanics theory. In this theory, a material-length scale parameter is applied to account for the effect of nanostructu...

متن کامل

Closed form solutions for free vibrations of rectangular Mindlin plates

A new two-eigenfunctions theory, using the amplitude deflection and the generalized curvature as two fundamental eigenfunctions, is proposed for the free vibration solutions of a rectangular Mindlin plate. The three classical eigenvalue differential equations of a Mindlin plate are reformulated to arrive at two new eigenvalue differential equations for the proposed theory. The closed form eigen...

متن کامل

Free Vibration Analysis of Composite Plates with Artificial Springs by Trigonometric Ritz Method

In this paper free vibration analysis of two rectangular isotropic plates, which are connected to each other by two translational and rotational springs along the edges, are investigated. The equation of motion and associated boundary and continuity conditions are derived using the extended Hamilton principle. To solve the eigenvalue problem, the Ritz method is utilized. Numerical investigation...

متن کامل

Free vibration analysis of orthotropic rectangular Mindlin plates with general elastic boundary conditions

In this investigation, a modified Fourier solution based on the Mindlin plate theory is developed for the free vibration problems of orthotropic rectangular Mindlin plates subjected to general boundary supports. In this solution approach, regardless of the boundary conditions, the plate transverse deflection and rotation due to bending are invariantly expressed as a new form of trigonometric se...

متن کامل

Free Natural Frequency Analysis of an FG Composite Rectangular Plate Coupled with Fluid using Rayleigh–Ritz Method

This study investigates natural frequency analysis of an FG composite rectangular plate partially contacting with a bounded fluid. The material properties are assumed to be varying continuously through the thickness direction according to a simple power law distribution in terms of volume fraction of material constituents. Wet dynamic transverse displacements of the plate are approximated by a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012